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We consider the stretching of a thin viscous thread, whose viscosity depends on
temperature, that is heated by a radiative heat source. The thread is fed into an
apparatus at a fixed speed and stretched by imposing a higher pulling speed at a
fixed downstream location. We show that thermal effects lead to the surprising result
that steady states exist for which the force required to stretch the thread can decrease
when the pulling speed is increased. By considering the nature of the solutions, we
show that a simple physical mechanism underlies this counterintuitive behaviour. We
study the stability of steady-state solutions and show that a complicated sequence of
bifurcations can arise. In particular, both oscillatory and non-oscillatory instabilities
can occur in small isolated windows of the imposed pulling speed.

1. Introduction
Stretching viscous fluids into long thin threads is important in a broad range of

applications. Examples include the use of polymeric materials and glass to produce
textiles and fibre optics (Denn 1980; Fitt et al. 2001). The production process often
requires high temperatures to facilitate stretching with moderate forces. The viscosity
of the materials that are typically used can vary dramatically with temperature.
Therefore, the resulting thermal gradients can be significant, leading to large gradients
in the viscosity of the thread. In some cases, external heating is applied to parts of
the thread to prevent other localized regions of high viscosity from developing.

Fibre stretching in the isothermal case has been widely studied (see, for example,
Denn 1980; Dewynne, Ockendon & Wilmott 1992; Cummings & Howell 1999). If the
draw ratio, i.e. ratio of the speed at which the fiber exits the device to that at which it
enters, exceeds a critical value then the process is subject to an oscillatory instability
known as draw resonance. A number of authors have considered how thermal effects
modify thread drawing (Shah & Pearson 1972a, b; Pearson & Shah 1973; Yarin
1986; Gupta & Schultz 1998; Forest & Zhou 2001). Thermal effects have also been
considered in a number of experimental studies (Fisher & Denn 1977; Han & Apte
1979), but these have mostly focused on the use of cooling to suppress draw resonance.
Matsumoto & Bogue (1978) conducted experiments in which temperature changes
cause the material to experience a phase transition. They found that instability could
arise that cannot be explained using a traditional draw resonance analysis. Blyler &
Gieniewski (1980) have carried out experiments that consider external heating of
the thread. They used a material whose viscosity varies abruptly with temperature
and observed that the process is extremely sensitive to the axial temperature profile.
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Figure 1. Fluid is fed in through a circular aperture of cross-sectional area A0 with speed u0

and temperature θ0 and is drawn at a fixed speed u1 at a distance L from the aperture by a
take-up roller. The thread is heated while it is in the device.

They showed that a number of mechanisms can cause instability. Even at very
low draw ratios, they found that the drawing process became extremely sensitive
to perturbations if the heating rate exceeded a critical value. Nevertheless, previous
theoretical studies showed that the stability boundaries, frequency, and amplitude
of the draw resonance instability are modified, but found no qualitatively different
dynamics when compared to the isothermal case.

In contrast, we show that thermal effects can lead to fundamentally different
dynamics. For example, rather than having a unique steady solution, multiple steady
states can exist. For a range of draw ratios, steady states can exist in which an increase
in the pulling speed leads to a decrease in the force required to pull the thread. We
propose a mechanism that underlies this behaviour and show that such solutions are
always unstable. Non-unique solutions exist if the viscosity varies sufficiently abruptly
with temperature and heating is strong enough to cause sufficiently large variations.
In addition, if the viscosity varies sufficiently abruptly with temperature, there are
other instabilities (both oscillatory and non-oscillatory) that occur in small isolated
windows of the draw ratio. These isolated windows tend to occur near draw ratios
for which multiple solutions exist.

2. Formulation
We consider a device that feeds an axisymmetric cylindrical thread of viscous fluid

at a constant speed u0 and temperature θ0 through an aperture with radius R0 and
cross-sectional area A0 = πR2

0 (figure 1). At a distance L from the aperture, the thread
is drawn out of the device at a fixed speed u1 by a receiving apparatus. The thread is
exposed to radiative heat transfer as it passes through the device.

Assuming that the length to thickness aspect ratio of the thread is large and the
temperature is radially uniform, one can use one-dimensional long-wave equations for
the conservation of mass and momentum, which have been developed by a number of
authors, including Forest & Zhou (2001). In the following paragraphs, we will show
that the assumption of radially uniform temperature is valid for typical parameter
values. The equation for conservation of mass is given by

At + (uA)x = 0 (2.1)
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where x is the distance along the thread measured from the aperture, t is the time,
u(x, t) is the velocity of the thread, and A(x, t) is the cross-sectional area. Neglecting
gravity, the momentum equation is given by

ρA

(
∂u

∂t
+ u

∂u

∂x

)
=

∂

∂x

(
3µ(θ)A

∂u

∂x
+ γ πR

)
(2.2)

where R(x, t) is the radius, µ is the viscosity that depends only on the temperature
θ , ρ is the density, and γ is the surface tension coefficient. The surface tension and
density also may depend on temperature, but the relative magnitude of their variation
is generally much smaller than that of the viscosity and so, for simplicity, we take
them to be constant. In the long-wavelength limit, axial conduction can be neglected
and the heat equation is given by

θt + uθx =
k

ρcp

1

r

∂

∂r

(
r
∂θ

∂r

)
(2.3)

where r is the axisymmetric radial position and cp and k are the specific heat
capacity and the thermal conductivity of the fluid, respectively. The radiative boundary
condition is given by

−k
∂θ

∂r

∣∣∣∣
r=R

= αkb

(
θ4 − θ4

h

)
(2.4)

where kb is the Boltzmann constant, α is the absorptivity, and θh is the heater
temperature.

The fluid speed, cross-sectional area, and temperature are specified at the input:

u = u0, A = A0, θ = θ0 at x = 0, (2.5)

and the speed is specified at the exit:

u = u1 at x = L. (2.6)

We also must specify the dependence of the viscosity on temperature. An
exponential function is often used in modelling the viscosity of glass materials and
polymers. However, this may not be an appropriate model for multicomponent
melts in which phase transitions can give rise to abrupt changes in viscosity as
the temperature varies. For example, in their thread drawing experiments, Blyler &
Gieniewski (1980) used an α-methyl styrene/silicone block compound whose viscosity
is almost insensitive to temperature changes in the range 100–140 ◦C but drops by an
order of magnitude between 140 ◦C and 180 ◦C (see figure 1 of their paper). Empirical
data for the viscosity of soda-lime also shows abrupt changes in viscosity (Pyrex
Glass Code 1987). In this case, the viscosity drops by a factor of approximately 1.5
between 900 ◦C and 1100 ◦C, but drops by a factor of approximately 25 between
1100 ◦C and 1300 ◦C. Other studies also have noted that polymer crystallization can
lead to even more dramatic increases in viscosity (Vassilatos, Knox & Frankfort 1985).
These abrupt changes often are modelled using a step-function model (Whitehead &
Helfrich 1991). We will show that the abruptness of viscosity changes plays an
important role in characterizing the dynamics. For simplicity, we adopt a hyperbolic
tangent function that varies between a viscosity value µ0 at low temperatures and a
viscosity µ0M at high temperatures:

µ(θ) = µ0

[
(1 + M)

2
− (1 − M)

2
tanh

(
θ − θ0 − θa

θr

)]
(2.7)
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where µ0 is a reference value of the viscosity, M < 1 is a viscosity contrast that
determines the size of changes in viscosity, θa is the temperature increase from
the input temperature required to cause a significant drop in the viscosity, and θr

represents the temperature range over which the rapid viscosity changes occur. This
model gives sufficient flexibility to characterize the principal features of viscosity
laws that are appropriate in many applications and allows us to easily vary both
the absolute magnitude and abruptness of viscosity changes in a simple way. Over
the finite range of temperatures that can occur in such applications, this model
can provide a reasonable approximation to the important qualitative features of the
exponential model, the step-function model, and the empirical data for soda-lime.
More realistic viscosity functions yield qualitatively similar results. Although this law
has a number of parameters, only two dimensionless groups play a significant role in
determining the qualitative behaviour of the system.

Typical parameter values used in glass pulling that are relevant to fiber optics
are given in Fitt et al. (2001) and Huang et al. (2003). These are L =
O(10−2) m, R0 = O(10−4) m, u0 =O(10−2) m s−1, ρ = 2.23 × 103 kg m−3, cp = 7.538×
102 J K−1 kg−1, k = 1.130Wm−1 K−1, kb = 5.67 × 10−8 Wm−2 K−4, θh =800 K, θa =
50 K, γ =O(10−1) kg s−2, α = 0.4, and µ0 = O(104) kg m−1 s−1. We non-dimensionalize
the equations using the following scales:

u = u0u
′, A = A0A

′, x = Lx ′, t = Lu−1
0 t ′, θ = θ0 + θaθ

′, µ(θ) = µ0µ
′(θ ′).

After substitution into (2.1)–(2.4) and dropping the primes, we find that the equation
of conservation of mass (2.1) is unchanged. The momentum equation becomes

Re

(
∂u

∂t
+ u

∂u

∂x

)
=

1

A

∂

∂x

(
µA

∂u

∂x
+ λR

)
(2.8)

where

Re =
ρu0L

3µ0

= O(10−5) (2.9)

is the Reynolds number which represents the ratio of inertia forces to viscous forces,
and

λ =
γL

3µ0u0R0

= O(3 × 10−2) (2.10)

is the ratio of surface tension forces to the viscous force. Since Re and λ are typically
small, we will neglect inertia and surface tension. The heat equation becomes

Pe

(
∂θ

∂t
+ u

∂θ

∂x

)
=

1

r

∂

∂r

(
r
∂θ

∂r

)
(2.11)

where

Pe =
ρcpu0R

2
0

Lk
= O(10−2) (2.12)

is the transverse Péclet number which represents the ratio of heat advected along
the thread to heat conducted across the thread. The radiative boundary condition
becomes

∂θ

∂r

∣∣∣∣
r=R

= BiH (θ) (2.13)

where

Bi =
αkbθ

4
hR0

kθa

= O(10−2) (2.14)
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is the Biot number. The dimensionless function H (θ) = 1 − θ−4
h (θ0 + θaθ)4 represents

the magnitude of the net heat flux that is absorbed when the temperature is θ .
The dimensionless heater strength is given by

H ≡ 2
√

πBi

Pe
=

2
√

παLkbθ
4
h

ρcpθau0R0

= O(1), (2.15)

which can be thought of as the heat absorbed by a thread moving with constant
speed u0 divided by the heat required to significantly change the viscosity. Small
values of H imply that the viscosity remains almost constant, and so the solution will
be similar to the isothermal case. Large values of H imply that significant viscosity
gradients will occur in the thread.

We assume that both Bi and Pe are small in such a way that their ratio is O(1).
Assuming the temperature has an asymptotic expansion of the form

θ = Θ0 + BiΘ1 + · · · , (2.16)

then substituting into (2.11) and (2.13) and collecting the terms to zeroth and first
order in Bi yields

1

r

∂

∂r

(
r
∂Θ0

∂r

)
= 0 with

∂Θ0

∂r

∣∣∣∣
r=R

= 0 (2.17)

and

1

r

∂

∂r

(
r
∂Θ1

∂r

)
=

2
√

π

H

(
∂Θ0

∂t
+ u

∂Θ0

∂x

)
with

∂Θ1

∂r

∣∣∣∣
r=R

= H (Θ0) . (2.18)

Equation (2.17) implies that the leading-order term Θ0 is independent of r . Therefore,
using (2.18), we see that Θ0 satisfies

∂Θ0

∂t
+ u

∂Θ0

∂x
=

HH (Θ0)√
A

. (2.19)

For notational brevity, we use θ to denote the leading-order term, Θ0. Having
neglected the inertial and surface tension terms, we obtain the equations

At + (uA)x = 0, (2.20)

[µ(θ)Aux]x = 0, (2.21)

θt + uθx = HH (θ)A−1/2. (2.22)

The dimensionless viscosity function is given by

µ(θ) =
(1 + M)

2
− (1 − M)

2
tanh[K(θ − 1)] (2.23)

where K = θa/θr is a measure of the abruptness of the change in viscosity. The
dimensionless entry and exit conditions are

u = 1, A = 1, θ = 0 at x = 0 and u = Dr at x = 1, (2.24)

respectively, where

Dr =
u1

u0

(2.25)

is the draw ratio.
The momentum equation (2.21) can be integrated to yield

µ(θ)Aux = 2F (2.26)
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where F is the dimensionless pulling force, which must be determined by the boundary
conditions. For unsteady calculations, F will depend on time, but in this paper, we
will focus on steady states in which case F will be a constant.

In practice, the heating term, H , may be slightly more complicated than the one
we have used here, depending on the design and location of the heater, see Huang
et al. (2003). However, the approach we adopt in this paper can be applied to any
heater design, viscosity law, and heating parameters. To illustrate the underlying
physical mechanisms that occur in thermal thread drawing, we will choose simple,
but physically relevant, functional forms. Specifically, we consider the case in which
the heater is assumed to supply a constant heating rate along the length of the thread.
For simplicity, we will assume that typical temperatures attained by the fluid are
sufficiently lower than the heater temperature that θ4

h is significantly larger than θ4.
This implies that the dimensionless heater profile is given by H (θ) = 1. Inclusion of
the full heating terms with realistic parameter values does not significantly modify
the results.

3. Steady-state solutions
We begin by seeking steady-state solutions of (2.20), (2.22) and (2.26). The

conservation-of-mass equation (2.20) and the entry conditions (2.24) yield

uA = 1. (3.1)

We eliminate u from equations (2.22) and (2.26) to obtain

µ(θ)
Ax

A
= −2F (3.2)

and

θx = HA1/2. (3.3)

It is possible to obtain integrals of (3.2) and (3.3) and write the solution formally
in terms of integrals of the viscosity function. However, for most viscosity laws, it is
more convenient to integrate (3.2) and (3.3) using a standard Runge–Kutta technique.
In fact, the dimensionless pulling force is a function of the exogenous variables H
and Dr , but one can more easily generate plots by taking fixed values of H and F
and finding the appropriate value of Dr . This can be done by numerically integrating
from x = 0 to x = 1 and using the boundary conditions (2.24).

In figure 2, we plot the dimensionless pulling force against the draw ratio
for different dimensionless heating rates and an abruptly varying viscosity law
(large K = 12) with a large change in viscosity (small M = 0.1). For H below a
critical value of approximately 1.43, the pulling force is a monotonically increasing
function of the draw ratio. However, for a sufficiently large heating rate, the curve
develops two fold points (labelled c and d for H = 1.6 in figure 2), the force is
no longer unique, and there is a range of draw ratios over which three steady
states can be found. We note that between the two fold points there are solutions
for which the pulling force decreases as the draw ratio increases. For a wide
range of parameters, three steady states was the maximum number that was
observed.

We investigate this highly counterintuitive behaviour and describe the simple
physical mechanism underlying this phenomenon. We choose a draw ratio for which
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Figure 2. The dimensionless force F as a function of the draw ratio Dr for different values
of the heating rate H with M = 0.1 and K =12. The points labelled a–g are included for easy
comparison with the H graph in figure 6(d) which shows stability results.
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Figure 3. The cross-sectional area A and temperature θ are plotted against the location x for
the three solutions that exist for a draw ratio Dr = 10 and H = 1.6. The curves are identified
by the three dimensionless force values F that result for the given draw ratio.

three possible solutions exist and note that the distinct solutions correspond to
different pulling forces. In figure 3, we plot the cross-sectional area and temperature
for each of the three solutions as functions of x. We note that the velocity is given
by u =A−1.
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We begin by noting that (3.2) can be rewritten to show how the rate at which the
cross-sectional area decreases is determined by the force and the viscosity,

(ln A)x = − 2F
µ(θ)

. (3.4)

When the fluid enters the device, the temperature and, hence, the viscosity are the
same for all three solutions. Therefore, from (3.4), the area decreases most slowly for
the case with the smallest force. Conservation of mass (2.20) implies that the larger
the area, the slower the speed of the fluid thread. Hence, the thread with the smallest
force moves more slowly, is exposed to radiative heating for a longer time, and will
attain a higher temperature near the exit. This higher temperature implies that the
viscosity near the exit will be smaller, and from (3.4), the thread will thin more rapidly
there. If the decrease in the viscosity is large enough, then the thread with the smallest
force can dramatically speed up (and thin) in the region near the exit and result in a
thread that has the same speed (and area) at the exit as the other two cases. A similar
argument explains the existence of the solution with the intermediate pulling force.

In order to obtain these non-unique steady states for fixed draw ratios, it is
important that the viscosity of the thread varies sufficiently abruptly with temperature
(large K) and has a sufficiently large change in viscosity (small M). We therefore
consider the large-K asymptotics of the solution. Using the viscosity function (2.7),
one can obtain an analytic expression for the first integral of (3.2)–(3.3), given by

A1/2 = 1 − F
H

[
θ +

1 − M

2MK
ln

(
1 + Me2K(θ−1)

1 + Me−2K

)]
. (3.5)

Hence (3.3) becomes

θx = H − F
[
θ +

1 − M

2MK
ln

(
1 + Me2K(θ−1)

1 + Me−2K

)]
. (3.6)

When K is large, this equation can be approximated as

θx = H − Fθ (3.7)

for θ − 1 < O(K−1) and

θx = H − F
M

(θ + M − 1) (3.8)

for θ − 1 > O(K−1). When θ − 1 = O(K−1), there is a transition layer with width of
the order 1/K . This transition layer is passive in the sense that the jump in θ across
the layer is zero at leading order.

Ignoring the passive transition layer, the leading-order solution is given by

u = A−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp[2Fx] if x <
1

F ln

(
H

H − F

)

exp

[
2Fx

M
+

2(M − 1)

M
ln

(
H

H − F

)]
if x >

1

F ln

(
H

H − F

)
,

(3.9)
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Figure 4. The dimensionless force F as a function of the draw ratio Dr for different values
of K for viscosity law (2.7). We have chosen the values for M =0.1 and H = 1.4. The solid
line represents the large-K asymptotic limit while the dot-dashed, dashed, and dotted lines are
for K = 10, 50, and 200, respectively.

and

θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H
F (1 − e−Fx) if x <

1

F ln

(
H

H − F

)

1 +
M(H − F)

F

[
1 −

(
H

H − F

)1/M

e−Fx/M

]
if x >

1

F ln

(
H

H − F

)
.

(3.10)

By substituting x = 1 into (3.9), we obtain the value of the draw ratio, Dr = u(1), as
a function of F

Dr =

⎧⎪⎪⎨
⎪⎪⎩

exp[2F] if H <
F

1 − e−F

exp

[
2F
M

+
2(M − 1)

M
ln

(
H

H − F

)]
if H >

F
1 − e−F .

(3.11)

Given a value of H, we can determine the critical value of F that represents the
boundary between the two functional forms in (3.11). This can be obtained by solving
H = g(F) ≡ F/(1 − e−F). We note that g → 1 as F → 0 and g is a monotonically
increasing function of F > 0. So if H � 1, then Dr will be a monotonically increasing
function, given by the first line of (3.11).

If H > 1, then Dr is determined by the first line of (3.11) for F � g−1(H) and
by the second line of (3.11) for 0 < F < g−1(H). The expression in the second line
of (3.11) has a local maximum at F = H − 1 + M , is monotonically increasing for
F < H−1+M , and monotonically decreasing for F > H−1+M . If the location of
this maximum is in the range 0 < F < g−1(H), then Dr will have a local maximum
at F = H − 1 + M and a local minimum at g−1(H) (see the solid line in figure 4);
otherwise Dr will be a monotonic function of F. In figure 4, we also plot the results
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for finite values of K for comparison. The upper branch of the K → ∞ curve (that
is given by solving (3.7) to obtain the first line of (3.11)) gives excellent agreement
with the curves for K � 50. However, the lower and middle branches of the K → ∞
curve (that are given by solving (3.8) to obtain the second line of (3.11)) require much
larger values of K before reasonable agreement is obtained. This occurs because the
correction terms in the asymptotic expansion of (3.7) are exponentially small, whereas
the correction terms in the asymptotic expansion of (3.8) are of order ln(1/M)/(MK).
Therefore, K � ln(1/M)/M is required for the asymptotic expansion to be valid.

We note that in the large-K limit, the local minimum is a corner when the transition
layer is ignored. When the transition layer is included, the corner is smoothed out
by a small O(1/K) correction. After some calculation, one can show that the local
expansion near the corner is given by

Dr = exp[2g−1(H)]

[
1 +

1

K
(2F1 + ν)

]
(3.12)

where

ν =
1 − M

M

{
exp[g−1(H)] − 1

}
ln{1 + M exp(−2kF1)}

and

F = g−1(H) + K−1F1, k =
1

g−1(H)
− 1

exp(g−1(H)) − 1
.

The smallest value of H ≡ Hmin for which Dr is a non-monotonic function of F
can be determined by calculating the value of H for which the local minimum and
local maximum coincide. This can be obtained by solving He−H = (1 − M)e−(1−M).
Since H > 1 and (1 − M) < 1, this equality can be solved to yield

Hmin = −W−1[(M − 1)eM−1] (3.13)

where W−1 is the Lambert-W function (Corless et al. 1996) which solves W [z]eW [z] = z.
In figure 5, we plot the results of a numerical computation to determine the smallest

dimensionless heating rate H that will give rise to the multiple solutions as a function
of the viscosity contrast M for various values of K and compare with the asymptotic
solution for K → ∞. For slowly varying viscosity laws (small K) or for viscosity
laws that have small absolute changes in viscosity (M close to unity), the non-unique
behaviour does not appear even for very large heating rates. However, non-unique
behaviour can still be achieved for less abruptly varying viscosity laws by localizing
the heating. If the heating is applied only over a region of the thread near the device
exit at x = 1, then non-unique behaviour appears more readily. This is because the
viscosity is constant before entering the heater, but can decrease rapidly in the heater
region. This effectively makes the viscosity change much more abruptly.

4. Stability
Fold points similar to those labelled c and d in figure 2 have been observed in a

diverse range of physical problems. For example, Whitehead & Helfrich (1991) and
Wylie & Lister (1995) have shown that fold points can occur when a fluid with a
temperature-dependent viscosity flows through a channel with cooled walls. Results
from bifurcation theory imply that, generically, the solutions that correspond to these
fold points must have a real zero eigenvalue (see, for example, Guckenheimer &
Holmes 1983, section 3.4 or Iooss & Joseph 1980, section II.8). In examples in which
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Figure 5. The minimum dimensionless heating rate Hmin required to give multiple solutions
is plotted as a function of the viscosity contrast M for different values of the abruptness of
the change in the viscosity K .

the eigenvalues are always real this implies that the only changes in stability that
can occur are at the two fold points. In most typical cases, the branch connecting
the two fold points will be unstable and the other two branches will be stable.
However, isothermal thread drawing (for which there are no fold points) has complex
eigenvalues and is subject to oscillatory instabilities. Thus one should not expect the
eigenvalues for the non-isothermal case to necessarily be real. Although the constraint
that there must be a real zero eigenvalue at the fold points still holds, we will
show that other Hopf birfurcations can occur that make the bifurcation structure
much more complicated.

In order to investigate the stability of the steady states obtained and described
above, we introduce small perturbations of the form

A = Â(x) + Ã(x)eλt , u = û(x) + ũ(x)eλt , θ = θ̂ (x) + θ̃ (x)eλt (4.1)

where the steady states are designated with hats and the perturbation quantities with
tildes. The quantity, λ, is the growth rate of the perturbations. After substitution of
(4.1) into (2.20)–(2.22) and linearization, we obtain the eigenvalue problem

λÃ + (ûÃ + ũÂ)x = 0, (4.2)

[µ(θ̂ )Âũx + µ(θ̂ )Ãûx + µ′(θ̂ )θ̃ Âûx]x = 0, (4.3)

λθ + ûθ̃x + ũθ̂x = − 1
2
HÂ−3/2Ã, (4.4)

where µ′ is the gradient of the viscosity with respect to temperature. The boundary
conditions are

ũ = 0, Ã = 0, θ̃ = 0 at x = 0, and ũ = 0 at x = 1. (4.5)

This eigenvalue problem was solved numerically by discretizing the equations using
up-winding to approximate the spatial gradients and computing the eigenvalues of
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the resulting matrix. We also verified the results using a complex-valued shooting
technique. We will show results for the linear stability as the heating rate increases
and non-unique steady states develop.

The natural way to present the results is to plot the real parts of the eigenvalues
as functions of the draw ratio, Dr . However, this is problematic because there can
be three possible steady states for a given draw ratio and determining which of the
curves corresponds to which basic state can be confusing. In figure 6, we therefore
plot the real parts of the eigenvalues against the dimensionless force, F, for a given
H since there is a one-to-one correspondence between steady states and values of F.
Nevertheless, it is important to bear in mind that Dr , and not F, is given exogenously.
Therefore, one should use figure 6 in conjunction with figure 2. This is especially true
in the cases where more than one steady-state solution exists for a given draw ratio,
figures 6(d) and 6(e). In the most complicated case, figure 6(d), we have labelled
various special points for easy comparison with figure 2.

We plot the real parts of the two eigenvalues with largest real parts as functions of
F for various values of H with a viscosity law that varies abruptly with temperature
(large K). In figure 6(a), we show the stability results for the unheated case, H = 0. In
this case, the two eigenvalues with largest real part always form a complex-conjugate
pair, and so they appear as a single curve. The real part of the eigenvalues increases
monotonically with both force and draw ratio until at a critical draw ratio, the real
part of the eigenvalues becomes positive, and the solution becomes unstable. This
instability is the well-known draw resonance (Denn 1980).

In figure 6(b–d), we see that a critical draw ratio at which the transition from stable
to unstable solutions occurs also is present and is only weakly affected by heating.
Steady-state solutions at these relatively large draw ratios correspond to threads that
rapidly move through the device, thus absorbing relatively little heat. This means
that the solution will be close to the constant viscosity case, and hence the stability
boundary will be similar to that for isothermal drawing.

As the heating rate increases, a number of qualitative changes occur in these graphs,
and we describe the incremental changes in the following paragraphs. We consider
a heating rate H = 1.4 (see figure 6b) that is sufficiently small that the required
force is still a monotonic function of the draw ratio. The eigenvalues still form a
complex-conjugate pair, but the real parts of the eigenvalues become positive in a
small window of forces (and hence draw ratios), and the solution will be oscillatorily
unstable. This small window exists for draw ratios in the vicinity of the point where
the gradient dF/dDr is largest.

For a slightly larger heating rate of H = 1.415, the required force is still a monotonic
function of the draw ratio. The results are shown in figure 6(c). There is still a small
window of instability, but in a portion of this window, the two eigenvalues are not
a complex-conjugate pair. As the force increases, these eigenvalues collide on the
positive real axis of the complex eigenvalue plane and then separate and move along
the positive real axis. The eigenvalues then return and collide again and move off
the real axis into the complex plane as a complex-conjugate pair. Therefore, inside
the small window of instability, there is an even smaller window in which small
disturbances will initially grow without oscillating.

In figure 6(d), we consider a value of H = 1.6 that is sufficiently large for the fold
points, c and d, to appear in the force–draw ratio graph. The graph of eigenvalues
against force is similar to figure 6(c). However, in this case, the required force is no
longer uniquely determined by the draw ratio. At fold points c and d, one of the
eigenvalues must pass through zero (Guckenheimer & Holmes 1983). In this case, it
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Figure 6. The real parts of the most unstable (solid line) and the second most unstable
(dashed line) eigenvalues are plotted against the dimensionless force F for the five constant
H curves in figure 2. When the two eigenvalues form a complex-conjugate pair, the two curves
appear as a single bold line. The parameters for the viscosity function are M = 0.1 and K = 12
and the heating rate takes values (a) H = 0, (b) 1.4, (c) 1.415, (d) 1.6, and (e) 1.75. Note that
for forces between the points c and d, there are three possible steady states for a given draw
ratio Dr . The labels a–g in figure 6(d) are provided to allow easy comparison with the H = 1.6
curve in figure 2.

is the second eigenvalue that does so and the overall stability is not affected. For
values of the force between the points c and d, there are three possible solutions.
If the eigenvalues were plotted against draw ratio, the part of the graph between
c and d would contain three stability curves. Therefore, the branch in figure 2 that
is below the point a is stable, the branches between the points a and f are unstable,
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Figure 7. The regions of parameter space in which the solution is stable (shaded dark) and
in which multiple solutions exist (shaded light) are shown in the (F, H)-plane for a viscosity
law with M = 0.1 and K = 12. For completeness, we also plot the boundary where the two
largest eigenvalues are real and equal (dashed line). The points labelled a–g are included for
easy comparison with figure 6(d).

the branch between f and g is stable, and the branch beyond the point g is unstable.
Since a has a smaller draw ratio than f, there is window of draw ratios in which all
three solutions are unstable.

As H increases, the region in which non-unique steady states exist becomes larger.
For sufficiently large values of H, the region with multiple steady states becomes so
large that the eigenvalues on the branch from the point e onwards will not cross the
real axis, so the points f and g will not exist. This means that only the solutions with
forces less than a critical value are stable and all other solutions are unstable. In this
case, there is no separate window of instability, and the net effect has been to move
the instability boundary to low values of the draw ratio.

In figure 7, we plot the region of parameter space for which the solution is stable
(shaded dark) in the (F, H)-plane. Thus, one can clearly see that as H increases
from 1.3 to 1.7, a small window of instability develops, grows in size, and eventually
merges with the draw resonance boundary. The region in which the force decreases
with increasing draw ratio is also shown (shaded light). Even though it is not important
for the overall stability, we also plot the boundaries where the instability becomes
non-oscillatory (dashed line). For easy comparison with figures 2 and 6(d), we also
label the points a–g for H = 1.6. In figure 8, we plot the stability boundary (solid line)
in the (Dr, H)-plane along with the region in which multiple solutions exist (shaded
light). For clarity, in this case, we omit the boundaries where the instability becomes
non-oscillatory. One should take particular care when viewing this figure because
in the shaded region, there are three possible solutions and, hence, three different
manifolds. The two branches of the stability boundary (solid line) are embedded in
different parts of the manifold (see figure 2).

Although the behaviour shown in figure 6 illustrates many of the important features
that occur in glass drawing, there are a number of possible variations that can occur.
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Figure 8. The region of parameter space in which multiple solutions exist (shaded light) and
the stability boundary (solid line) are plotted in the (Dr, H)-plane for a viscosity law with
M = 0.1 and K = 12. Special care should be taken when interpreting the stability boundary
because the shaded region contains three solutions. The points labelled a–g are included for
easy comparison with figure 6(d).

First, in figure 2, the point a has a lower draw ratio than the point f, so there is a
small region of draw ratios between a and f in which no stable solution exists. On
the other hand, for more abrupt viscosity laws, the situation can arise in which the
point f has a lower draw ratio than the point a, so there exists a small region of draw
ratios in which two stable steady states exist.

5. Conclusion
We have shown that the drawing of viscous threads in the presence of heating can

lead to a novel thermo-viscous instability. If the heating is sufficiently strong and
the magnitude and abruptness of the viscosity variation are sufficiently large, then
three possible steady-state solutions can coexist. One of these three steady states has
the property that small increases in the draw ratio lead to decreases in the required
force and is always unstable. We also have determined the mechanism that underlies
the non-uniqueness. We have considered the linear stability of these flows and shown
that small windows of instability can arise that are not present in the isothermal
case. We hope that this work will motivate further experimental studies that carefully
examine the effects of external heating on draw resonance. In experimental studies,
it may prove easier to detect the non-unique steady states by using a fixed pulling
force rather than a fixed draw ratio. In this case, the system is hyperbolic and so no
absolute instabilities (including draw resonance) will occur. Hence, in principle, one
could realize solutions corresponding to all three of the branches.
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